The David S. Olton Behavioral Biology Program seeks to establish a greater understanding of the relations of brain and behavior through an interdisciplinary program of study. Students in the Behavioral Biology Program examine the complex interplay between environment and behavior, and the processes and mechanisms that underlie behavior. One goal of the program is for students to learn how to integrate scientific discoveries from the wide array of scientific fields of inquiry that contribute to the study of behavioral biology, from molecular biology to sociology.

The interdisciplinary characteristics of the Behavioral Biology Program provide an excellent preparation for post-graduate work. For those interested in the health professions, behavioral biology can be integrated into a premedical curriculum that will provide a broad, humanistic perspective. For those who wish to pursue scientific careers in psychopharmacology, behavioral neuroscience, and physiological psychology, the program provides excellent preparation. Students interested in the fields of organismal or integrative biology should also consider this major.

Many students ask about the similarities and differences between the behavioral biology major and the neuroscience major. Both of these programs are interdepartmental, and a majority of professors teach courses that are listed for both majors. Behavioral Biology majors can explore many aspects of the biology of behavior, including the neural mechanisms of behavior (which obviously overlaps with the neuroscience major), but also biomechanical, evolutionary, ecological, and social aspects of behavior. The behavioral biology major also has fairly liberal course requirements which provide students with an opportunity to explore more choices in their liberal arts education. Students majoring in neuroscience focus directly on the brain and on neural function/mechanisms. Generally speaking, the systems neuroscience focus area in the neuroscience major has the most overlap with behavioral biology.

The core program of the behavioral biology major provides background and breadth in

1. The life sciences (e.g., biology and neuroscience)
2. The natural sciences (e.g., chemistry and physics) and mathematics (e.g., calculus and statistics)
3. The social and behavioral sciences (e.g. psychology and anthropology)

The exact courses to be taken are determined by the student in conjunction with the faculty adviser. A grade of C- or better is required for courses fulfilling major requirements and courses may not be taken satisfactory/unsatisfactory. Hopkins undergraduates may enter the Behavioral Biology Program at any time, provided all requirements can be completed before graduation.

Additional information regarding the Behavioral Biology Program is available through our website at http://krieger.jhu.edu/behavioralbiology. You may also contact our Academic Program Administrator, Linda White, linda.m.white@jhu.edu or 410-516-6196.

Requirements for the B.A. Degree

Also see Requirements for a Bachelor’s Degree. (http://e-catalog.jhu.edu/undergrad-students/academic-policies/requirements-for-a-bachelors-degree) Requirements for the behavioral biology major are as follows:

Math and Science Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS.030.101</td>
<td>Introductory Chemistry I</td>
<td></td>
</tr>
<tr>
<td>& AS.030.105</td>
<td>and Introductory Chemistry Laboratory I</td>
<td></td>
</tr>
<tr>
<td>AS.030.102</td>
<td>Introductory Chemistry II</td>
<td></td>
</tr>
<tr>
<td>& AS.030.106</td>
<td>and Introductory Chemistry Laboratory II</td>
<td></td>
</tr>
<tr>
<td>or AS.030.103</td>
<td>Applied Chemical Equilibrium and Reactivity w/lab</td>
<td></td>
</tr>
<tr>
<td>AS.171.101</td>
<td>General Physics: Physical Science Major I</td>
<td></td>
</tr>
<tr>
<td>or AS.171.103</td>
<td>General Physics I for Biological Science Majors</td>
<td></td>
</tr>
<tr>
<td>or AS.171.107</td>
<td>General Physics for Physical Sciences Majors (AL)</td>
<td></td>
</tr>
<tr>
<td>AS.173.111</td>
<td>General Physics Laboratory I</td>
<td></td>
</tr>
<tr>
<td>AS.171.102</td>
<td>General Physics: Physical Science Major II</td>
<td></td>
</tr>
<tr>
<td>or AS.171.104</td>
<td>General Physics/Biology Majors II</td>
<td></td>
</tr>
<tr>
<td>or AS.171.108</td>
<td>General Physics for Physical Sciences Majors (AL)</td>
<td></td>
</tr>
<tr>
<td>AS.173.112</td>
<td>General Physics Laboratory II</td>
<td></td>
</tr>
<tr>
<td>AS.110.106</td>
<td>Calculus I (Biological and Social Sciences)</td>
<td></td>
</tr>
<tr>
<td>or AS.110.108</td>
<td>Calculus I</td>
<td></td>
</tr>
<tr>
<td>AS.110.107</td>
<td>Calculus II (For Biological and Social Science)</td>
<td></td>
</tr>
<tr>
<td>or AS.110.109</td>
<td>Calculus II (For Physical Sciences and Engineering)</td>
<td></td>
</tr>
<tr>
<td>or AS.110.113</td>
<td>Honors Single Variable Calculus</td>
<td></td>
</tr>
</tbody>
</table>

One Statistics Option. Students may select from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN.553.111</td>
<td>Statistical Analysis I</td>
<td>8</td>
</tr>
<tr>
<td>& EN.553.112</td>
<td>and Statistical Analysis II</td>
<td></td>
</tr>
<tr>
<td>EN.553.211</td>
<td>Probability and Statistics for the Life Sciences</td>
<td>4</td>
</tr>
<tr>
<td>EN.553.310</td>
<td>Probability & Statistics</td>
<td>4</td>
</tr>
<tr>
<td>EN.553.311</td>
<td>Probability and Statistics for the Biological Sciences and Engineering</td>
<td>4</td>
</tr>
</tbody>
</table>

Biology Sequence

Students must have 2 of the following Biology Options. Students can use any combination of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS.020.151</td>
<td>General Biology I</td>
<td>4</td>
</tr>
<tr>
<td>& AS.020.153</td>
<td>and General Biology Laboratory I (see footnote about AP Biology credits) *</td>
<td></td>
</tr>
<tr>
<td>AS.020.152</td>
<td>General Biology II</td>
<td>4</td>
</tr>
<tr>
<td>& AS.020.154</td>
<td>and General Biology Lab II (see footnote about AP Biology credits) *</td>
<td></td>
</tr>
<tr>
<td>AS.020.303</td>
<td>Genetics</td>
<td>5</td>
</tr>
<tr>
<td>& AS.020.340</td>
<td>and Developmental Genetics Lab (Lab)</td>
<td></td>
</tr>
<tr>
<td>AS.020.305</td>
<td>Biochemistry</td>
<td>5</td>
</tr>
<tr>
<td>& AS.020.315</td>
<td>and Biochemistry Project lab (AS.250.253/254 may substitute for AS.020.315)</td>
<td></td>
</tr>
<tr>
<td>AS.020.306</td>
<td>Cell Biology</td>
<td>5</td>
</tr>
<tr>
<td>& AS.020.316</td>
<td>and Cell Biology Lab</td>
<td></td>
</tr>
<tr>
<td>AS.020.374</td>
<td>Comparative Animal Physiology</td>
<td>4</td>
</tr>
<tr>
<td>& AS.020.377</td>
<td>and Comparative Physiology Lab</td>
<td></td>
</tr>
</tbody>
</table>

Behavioral Biology Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS.290.101</td>
<td>Human Origins</td>
<td>3</td>
</tr>
<tr>
<td>AS.200.141</td>
<td>Foundations of Brain, Behavior and Cognition</td>
<td>3</td>
</tr>
<tr>
<td>AS.200.208</td>
<td>Animal Behavior</td>
<td>3</td>
</tr>
<tr>
<td>AS.080.250</td>
<td>Neuroscience Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>AS.290.490</td>
<td>Senior Seminar: Behavioral Biology</td>
<td>1</td>
</tr>
</tbody>
</table>
Behavioral Biology Elective Courses

Nine credits of advanced bio-behavioral science courses (BEHB-BIOBEH)

Six credits of intermediate/advanced social/developmental/cognitive sciences courses (BEHB-SOCSCI)

Research or Internship Requirement

AS.290.500 Connections in Behavioral Biology

Behavioral biology research or internship (one semester)

* For students with AP Biology credit, they may use only one course and its lab from those credits towards this requirement. Therefore, these students must take at least one biology course and its lab at JHU. Students who elect to take General Biology I or II with its lab will lose the corresponding AP credits. Students should also refer to AP credit policies for additional details around the use of AP Biology credits.

** Students should refer to the program website (http://krieger.jhu.edu/behavioralbiology/courses) or the schedule of classes to identify elective choices.

Sample Program

This is only one of many possible course sequences that students may elect to follow; it assumes that students do not have any AP/IB/TR courses to apply toward their degrees.

Freshman

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS.110.106</td>
<td>Calculus I (Biology and Social Sciences)</td>
<td>4 AS.110.107 Calculus II (For Biological and Social Science)</td>
<td>4</td>
</tr>
<tr>
<td>AS.030.101</td>
<td>Introductory Chemistry I</td>
<td>3 AS.030.102 Introductory Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>AS.030.105</td>
<td>Introductory Chemistry Laboratory I</td>
<td>1 AS.030.106 Introductory Chemistry Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>AS.200.141</td>
<td>Foundations of Brain, Behavior and Cognition</td>
<td>3 AS.290.101 Human Origins</td>
<td>3</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology Option 1</td>
<td>3-4 Biology Option 2</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Biology Lab Option 1</td>
<td>1-3 Biology Lab Option 2</td>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td>AS.200.208</td>
<td>Animal Behavior</td>
<td>3 EN.553.112 Statistical Analysis II</td>
<td>4</td>
</tr>
<tr>
<td>EN.553.111</td>
<td>Statistical Analysis I</td>
<td>4 Upper Level Elective (BEHB-SOCSCI)</td>
<td>3</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS.171.103</td>
<td>General Physics I for Biological Science Majors</td>
<td>4 AS.171.104 General Physics/Biology Majors II</td>
<td>4</td>
</tr>
<tr>
<td>AS.173.111</td>
<td>General Physics Laboratory I</td>
<td>1 AS.173.112 General Physics Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>Upper Level Elective (BEHB-BIOBEH)</td>
<td>3 Upper Level Elective (BEHB-SOCSCI)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS.290.500</td>
<td>Connections in Behavioral Biology</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

Research or Internship 1-3

Honors in the Major

To receive honors in behavioral biology, students must have met the following criteria:

1. Earn a GPA of 3.5 or better in major requirements
2. Conduct research and give a research presentation
3. Receive a recommendation from research mentor

For current faculty and contact information go to http://krieger.jhu.edu/behavioralbiology/faculty_directory/

Faculty

Chair
Christopher Honey, Ph.D
Assistant Professor, Psychological and Brain Sciences

Director of Undergraduate Studies
Kirsten Bohn, Ph.D
Assistant Research Professor, Psychological and Brain Sciences

Lecturers
Chris Kraft, Ph.D.
Johns Hopkins Center for Marital and Sexual Health, Sexual Behaviors Consultation Unit, Johns Hopkins Medical Institutions
Amy Balanoff, Ph.D.
Psychological and Brain Sciences

For current course information and registration go to https://sis.jhu.edu/classes/
Courses

AS.290.101. Human Origins. 3.0 Credits.
This course examines the origins of human structure, function and behavior from an evolutionary perspective. It includes study of the evolution, behavior and behavioral ecology of nonhuman primates, hominin evolution (including the paleontological and archaeological records), and the origins of human cognition, social behavior and culture.
Prerequisites: NA
Corequisites: NA
Instructor(s): P. Holland
Area: Natural Sciences, Social and Behavioral Sciences

AS.290.303. Animal Communication. 3.0 Credits.
This course examines animal communication in all modalities (especially sound, sight, and scent) across taxa. Production, perception and evolution of signals will be discussed. Students will learn how to conduct research and write scientific papers in publication form.
Prerequisites: AS.200.208 AND AS.200.141
Corequisites: NA
Instructor(s): K. Porth-Bohn
Area: Natural Sciences, Social and Behavioral Sciences

AS.290.304. Comparative Neuroanatomy. 3.0 Credits.
This course examines the phylogenetic and developmental history of the central nervous system across the vertebrate tree of life, with emphasis on the deep history of those features that characterize the human brain. We will study how our understanding of non-human vertebrates (both model and non-model organisms) can provide important insights into the structure and function of the modern human brain.
Prerequisites: (AS.080.305 AND AS.080.306) OR AS.200.141
Corequisites: NA
Instructor(s): A. Balanoff
Area: Natural Sciences

AS.290.420. Human Sexual Orientation. 3.0 Credits.
This course will examine the historical and current theories of sexual orientation and sexual variation development by examining the biological, psychological and social contributing factors that influence the development of sexual orientations and variations along with treatment and modification of problematic sexual behaviors. Please note that the use of electronic devices is not permitted during this class, in order to promote the full interactive potential of this engaging seminar-style offering. Students may enroll in both AS.200.204 and AS.290.420, but cannot do so in the same semester. Enrollment is limited to Senior Majors & Minors in Behavioral Biology, Biology, Cognitive Science; Medicine, Science & the Humanities; Molecular & Cellular Bio; Neuroscience; Psychology; Public Health; Sociology; Study of Women, Gender, & Sexuality.
Prerequisites: NA
Corequisites: Students may enroll in both AS.200.204 and AS.290.420, but cannot do so in the same semester.
Instructor(s): C. Kraft
Area: Social and Behavioral Sciences

AS.290.490. Senior Seminar: Behavioral Biology. 1.0 Credit.
Great ideas in Behavioral Biology. Discussion of classic and cutting edge articles in the original literature. Student presentations and reaction papers. Capstone course for senior Behavioral Biology majors.
Prerequisites: (AS.290.101 AND AS.200.208 AND AS.200.141) or Instructor permission.
Corequisites: NA
Instructor(s): C. Honey; P. Holland
Area: Social and Behavioral Sciences

AS.290.500. Connections in Behavioral Biology. NA Credit.
A small group of students will meet two times in the semester to share experiences and information on research, internship and volunteer activities in Behavioral Biology. This course is designed to 1) help Behavioral Biology majors obtain real world experiences that can lead to opportunities after graduation, 2) provide an informal setting to develop oral and written communication skills, and 3) build community among students in the major. Students will make oral presentations to the group about activities they wish to pursue or have already completed. Students will also write a short paper/news piece or prepare a webpage on an internship, research or volunteer experience.
Prerequisites: NA
Corequisites: NA
Instructor(s): K. Porth-Bohn
Area: NA

AS.290.501. Research-Freshmen. 1.0 - 3.0 Credits.
Prerequisites: You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
Corequisites: NA
Instructor(s): Staff
Area: NA

AS.290.502. Research-Freshmen. 1.0 - 3.0 Credits.
Prerequisites: You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
Corequisites: NA
Instructor(s): Staff
Area: NA

AS.290.503. Research-Sophomores. 1.0 - 3.0 Credits.
Prerequisites: You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
Corequisites: NA
Instructor(s): Staff
Area: NA

AS.290.504. Research-Juniors. 1.0 - 3.0 Credits.
Prerequisites: You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
Corequisites: NA
Instructor(s): Staff
Area: NA

AS.290.505. Research-Seniors. 1.0 - 3.0 Credits.
Prerequisites: You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
Corequisites: NA
Instructor(s): Staff
Area: NA

AS.290.504. Research-Sophomores. 1.0 - 3.0 Credits.
NA
Prerequisites: You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
Corequisites: NA
Instructor(s): Staff
Area: NA
NA.

AS.290.505. Research-Juniors. 1.0 - 3.0 Credits.
NA
Prerequisites: You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
Corequisites: NA
Instructor(s): Staff
Area: NA
NA.

AS.290.506. Research-Juniors. 1.0 - 3.0 Credits.
NA
Prerequisites: You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
Corequisites: NA
Instructor(s): Staff
Area: NA
NA.

AS.290.507. Research-Seniors. 1.0 - 3.0 Credits.
NA
Prerequisites: You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
Corequisites: NA
Instructor(s): Staff
Area: NA
NA.

AS.290.508. Research-Seniors. 1.0 - 3.0 Credits.
NA
Prerequisites: You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
Corequisites: NA
Instructor(s): Staff
Area: NA
NA.

AS.290.519. Independent Study. 1.0 - 3.0 Credits.
NA
Prerequisites: You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
Corequisites: NA
Instructor(s): K. Porth-Bohn
Area: NA
NA.

AS.290.520. Independent Study. 1.0 - 3.0 Credits.
NA
Prerequisites: You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
Corequisites: NA
Instructor(s): C. Moss; K. Porth-Bohn; L. Gorman
Area: NA
NA.

AS.290.590. Behavioral Biology Internship. 1.0 - 3.0 Credits.
NA
Prerequisites: You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
Corequisites: NA
Instructor(s): K. Porth-Bohn
Area: NA
NA.

AS.290.594. Behavioral Biology Internship. 1.0 Credit.
NA
Prerequisites: You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
Corequisites: NA
Instructor(s): C. Moss; K. Porth-Bohn; L. Gorman
Area: NA
NA.

AS.290.596. Behavioral Biology Internship. 1.0 - 3.0 Credits.
NA
Prerequisites: You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
Corequisites: NA
Instructor(s): L. Gorman
Area: NA
NA.

AS.290.597. Research - Summer. 3.0 Credits.
NA
Prerequisites: You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
Corequisites: NA
Instructor(s): Staff
Area: NA
NA.

Cross Listed Courses
Biology
AS.020.151. General Biology I. 3.0 Credits.
This course is an introduction to biology from an evolutionary, molecular and cellular perspective. Specific topics and themes include evolutionary theory, the structure and function of biological molecules, mechanisms of harvesting energy, cell division, classical genetics and gene expression. This section will involve in-class problem solving and the use of assigned pre-class videos and questions.
Prerequisites: NA
Corequisites: NA
Instructor(s): C. Roberson; R. Pearlman; R. Shingles
Area: Natural Sciences
NA.
AS.020.152. General Biology II. 3.0 Credits.
This course builds on the concepts presented and discussed in General Biology I. The primary foci of this course will be on the diversity of life and on the anatomy, physiology, and evolution of plants and animals. There will be a special emphasis on human biology.
Prerequisites: Prereq: AS.020.151
Corequisites: NA
Instructor(s): C. Roberson; R. Pearlman; R. Shingles
Area: Natural Sciences
NA.

AS.020.153. General Biology Laboratory I. 1.0 Credit.
This course reinforces the topics covered in AS.020.151. Students participate in a semester-long project, identifying bacteria from Homewood campus soils using molecular biology techniques. Other laboratory exercises cover aspects of evolution, genomics and biochemistry. Cross-listed with Behavioral Biology. Student must have enrolled in AS.020.151 either this term or in past terms. Students who have credit for AP Biology but take General Biology Lab I will lose four credits of AP Biology credit. Cross-listed with Behavioral Biology.
Prerequisites: Students must have completed Lab Safety training prior to registering for this class. To access the tutorial, login to myLearning and enter 458083 in the Search box to locate the appropriate module.;AS.020.151
Corequisites: NA
Instructor(s): R. Pearlman
Area: Natural Sciences
NA.

Neuroscience
AS.080.301. Behavioral Assessment of Animal Models of Cognition and Neuropsychiatric Disorders. 3.0 Credits.
What does a rat exploring its environment tell us about memory? How can a mouse help us better understand schizophrenia? This course will focus on procedures that are routinely used to study behavior in animal models of cognition and neuropsychiatric disorders. Topics will include motor function, emotional and motivational states, disorders such as dementia and schizophrenia, among others. Throughout the course, we will read and discuss original research articles to illustrate and compare some of the measures and results from the various procedures.
Prerequisites: Students may not have taken AS.200.302;AS.200.141 OR (AS.080.305 and AS.080.306), OR by instructor permission.
Corequisites: NA
Instructor(s): D. Smith
Area: Social and Behavioral Sciences
NA.

AS.080.304. Neuroscience Learning and Memory. 3.0 Credits.
This course is an advanced survey of the scientific study of learning and memory. Different perspectives will be used to review the science of learning and memory including the cellular-molecular basis of synaptic plasticity, the functional circuitry involved in learning and memory and memory systems in the brain. The course is designed to provide a deep understanding of the issues and current debates in learning and memory research and focuses specifically on animal models of memory and memory impairment. This is an interactive lecture course with a strong emphasis on student participation.
Corequisites: NA
Instructor(s): A. Bakker
Area: Natural Sciences
NA.

AS.080.308. Neuroeconomics. 3.0 Credits.
Every day decisions often require us to weigh the costs and benefits of engaging in a particular course of action in order to obtain some expected outcome. Unfortunately, we often lack the information necessary to obtain our desired goal with complete certainty. Economists have long been interested in understanding human decision-making under these circumstances. In parallel, neuroscientists have made great strides at describing the underlying neural basis of simple decision-making. However, despite much progress in both fields, our understanding of how the brain makes decisions is incomplete. In order to strengthen and further research in both fields, the interdisciplinary field of Neuroeconomics arose. This course will survey the field of Neuroeconomics focusing on theoretical concepts developed by economists and the role these theories are playing in guiding current experimental neuroscience. Recommended Course Background: AS.080.305 and AS.080.306 or AS.020.312 and AS.020.306 or AS.200.141 and AS.020.306 or permission.
Prerequisites: Pre-reqs: AS.080.306 OR AS.200.141 OR AS.020.312
Corequisites: NA
Instructor(s): J. Trageser
Area: Natural Sciences
NA.

AS.080.328. Behavioral Neuroscience Lab. 3.0 Credits.
Class designed to give students first-hand knowledge of the behavioral procedures and techniques used to study behavior in the field of neuroscience. Students will gain hands-on experience by carrying out some of the behavioral tasks used to assess animals under specific behavioral domains, discuss why certain aspects (i.e. genotype, environment conditions, group size, etc.) are important factors to consider when designing, planning, and carrying out such experiments, and learn the relevance of behavioral research in translational medicine.
Prerequisites: AS.200.141 OR AS.200.302 OR AS.080.301 OR (AS.080.305 AND AS.080.306) or permission by instructor.
Corequisites: NA
Instructor(s): D. Smith
Area: Natural Sciences
NA.

AS.080.370. The Cerebellum: Is it just for motor control?. 3.0 Credits.
The cerebellum is traditionally thought to be involved in movement and motor control, and observations of patients with cerebellar damage do in fact show motor deficits. However, since the proliferation of functional MRI, cerebellar activations have been observed in a surprising number of brain activation studies that were designed to investigate the neural correlates of cognitive function. Over the past 2 decades, an increasing number of investigators have tried to characterize the role of the cerebellum in cognitive function. Through lectures and reading discussions this course will survey cerebellar circuitry, neuromaging and neuromodulatory methods for investigating the cerebellum, and traditional and non-traditional functions of the cerebellum, including cerebellar involvement in cognitive functions such as language, working memory, and executive control.
Prerequisites: Pre-reqs: (AS.080.306 AND AS.080.203) OR AS.050.203
Corequisites: NA
Instructor(s): J. Desmond
Area: Natural Sciences, Social and Behavioral Sciences
NA.
Psychological Brain Sciences

AS.200.141. Foundations of Brain, Behavior and Cognition. 3.0 Credits.
A survey of neuropsychology relating the organization of behavior to the integrative action of the nervous system. Cross-listed with Behavioral Biology and Neuroscience.

Prerequisites: NA
Corequisites: NA
Instructor(s): D. Smith
Area: Natural Sciences, Social and Behavioral Sciences

AS.200.208. Animal Behavior. 3.0 Credits.
Examine basic principles of animal behavior (orientation, migration, communication, reproduction, parent-offspring relations, ontogeny of behavior and social organization). Evolution and adaptive significance of behavior will be emphasized.

Prerequisites: AS.200.141 OR Permission of Instructor.
Corequisites: NA
Instructor(s): K. Porth-Bohn
Area: Natural Sciences, Social and Behavioral Sciences

AS.200.334. Human Memory Psychology. 3.0 Credits.
This class will survey the behavioral and biological science of human memory. Historical perspectives as well as modern controversies will be discussed. Intersections with other fields such as law, education, medicine, and technology will be highlighted. The course will be a mixture of lectures and group discussions.

Prerequisites: NA
Corequisites: NA
Instructor(s): J. Chen
Area: Social and Behavioral Sciences

AS.200.344. Behavioral Endocrinology. 3.0 Credits.
An examination of the effects of hormones on behavior in non-human and human animals. Topics will include the effects of hormones on sexual differentiation, reproductive behavior, parental behavior, homeostasis and biological rhythms, regulation of body weight, learning and memory. Cross-listed with Behavioral Biology and Neuroscience.

Prerequisites: (AS.200.141 OR AS.080.306) OR (AS.020.151 AND AS.020.152) OR (AS.020.305 AND AS.020.306) or instructor’s permission
Corequisites: NA
Instructor(s): K. Porth-Bohn
Area: Natural Sciences, Social and Behavioral Sciences

AS.200.376. Neuropsychopharmacology. 3.0 Credits.
Designed to provide information about how drugs affect the brain and behavior. The course focuses on biological concepts underlying structures and functions of the brain that relate to mental disorders.

An introduction to neurobiology and brain function is presented as it applies to the interaction of various classes of drugs with the individual neurotransmitter systems in the brain. A brief historic review is followed by a discussion of clinical relevance. Cross-listed with Behavioral Biology and Neuroscience. Enrollment limited to juniors and seniors.

Prerequisites: (AS.080.305 AND AS.080.306) OR AS.020.306 AND AS.020.312) OR (AS.200.141 AND AS.020.306)
Corequisites: NA
Instructor(s): S. Sterbing-d’angelo
Area: Natural Sciences, Social and Behavioral Sciences

AS.200.386. Animal Cognition. 3.0 Credits.
Examine relations between brain, mind, and behavior in nonhuman animals, focusing on topics such as learning, memory, attention, decision-making, navigation, communication, and awareness. We will take a variety of approaches, including behavioral, computational, evolutionary, neurobiological, and psychological perspectives.

Prerequisites: AS.200.141 OR AS.200.208 OR AS.290.101 or Instructor permission.
Corequisites: NA
Instructor(s): P. Holland
Area: Social and Behavioral Sciences

NA.