GENERAL ENGINEERING

The General Engineering program offers both a B.A. with a major in general engineering and a number of non-departmental courses.

Bachelor of Arts in General Engineering

The Bachelor of Arts in General Engineering is a liberal arts degree that is designed to provide students with both a focus in some area of humanities or social sciences and the fundamental engineering principles needed to understand modern technology, innovations, and engineering practices. It is intended for undergraduate students who desire a background in engineering and technology yet have neither the desire nor the intention to become professional engineers. These students may, for example, plan to pursue graduate or professional study in architecture, business, law (e.g., intellectual property, patent law), or medicine. They may wish to work in areas which relate to engineering and technology or to thrive in the global industrial economy. The Bachelor of Arts in General Engineering is a true liberal arts degree with an emphasis in engineering.

This degree is not an engineering degree, and is not suitable for employment as a professional engineer. This program is not accredited by ABET. Students desiring careers as professional engineers should complete a B.S. degree in one of the engineering disciplines offered by the Whiting School.

The distinctive features of the Bachelor of Arts in General Engineering include:

- **Breadth.** Course requirements for the Bachelor of Arts in General Engineering encourage breadth, including mathematics, natural sciences, humanities and/or social sciences, international studies (language or other courses and experience in a foreign country), and in engineering. The curriculum also allows for many free electives.

- **Flexibility.** This program is designed to allow students, in consultation with their advisor, the flexibility to choose a program of study that matches their interests. The engineering focus area and the humanities and social science requirements may be departmentally based or may follow a theme designed by the student and his/her advisor. Students are encouraged to minor in any area of their choosing.

- **Interdisciplinary Study.** The distribution requirements are ideal for students who seek to understand areas at the interface between technical fields (such as robotics, nanotechnology, and biomaterials) or the connections between a technical area and a discipline in the humanities or social sciences (for example environment issues and international trade or ethics and biotechnology).

- **International Dimensions of Engineering.** Students are required to develop knowledge of the international dimensions of engineering. They may do this by studying abroad or by taking a combination of language and other classes that develop an understanding of the culture, technology, or society in a foreign country.

Requirements for the B.A. Degree

All undergraduate students majoring in the Bachelor of Arts in General Engineering must follow a program approved by their advisor. Candidates must fulfill the overall requirements for the bachelor's degree (https://engineering.jhu.edu/academics/general-engineering/).

- Mathematics (20 credits)

  Mathematics is at the core of modern science and technology and a solid foundation is required to understand how contemporary engineering problems are solved. Students are required to take five courses including:

  AS.110.108 Calculus I
  or AS.110.106 Calculus I (Biology and Social Sciences)
  AS.110.109 Calculus II (For Physical Sciences and Engineering)
  or AS.110.107 Calculus II (For Biological and Social Science)
  or AS.110.113 Honors Single Variable Calculus

  One course in statistics
  One course at the 200-level or above in either statistics or mathematics
  One mathematics or statistics elective

  Total Credits 20

- Natural Sciences (15 credits)

  Students are required to take four courses and two laboratory courses including:

  AS.171.101 General Physics: Physical Science Major I
  or AS.171.103 General Physics I for Biological Science Majors
  or AS.171.105 Classical Mechanics I
  or AS.171.107 General Physics for Physical Sciences Majors (AL)
  or EN.530.123 Introduction to Mechanics I

  At least one course chosen from the following:
  AS.030.101 Introductory Chemistry I
  AS.030.107 Chemical Principles w/lab: An Integrated Studio Course

  Two terms of laboratory course (Integrated lab from AS.030.107 may count as 1 lab)
  Two elective courses (area code N)

  Total Credits 17

- Humanities and Social Sciences (24 credits)

  Writing Requirement. Students must complete at least four (minimum of 12 credits) writing intensive courses (catalog code W) and one of these courses must specifically develop writing skills, such as EN.661.110

be found in the Advising Manual for general engineering (https://engineering.jhu.edu/academics/general-engineering/).
Professional Writing and Communication or AS.060.113 Expository Writing.

**Humanities or Social Science Focus.** A minimum of four courses (12 credits) must be taken as a coherent group in either the humanities or social sciences, of which two are at the advanced (300+) level.

**Humanities or Social Science Elective.** Three additional courses (9 credits) in either the humanities or social sciences. These electives are typically used to take courses in economics and the history of science and technology, depending on the courses chosen to fulfill the concentration requirements detailed above.

**International Dimensions of Engineering**
Because of the importance of the globalization of technology, all students completing the B.A. in general engineering are required to demonstrate competence in being able to address technical issues within the context of another society. This can be done in one of three different ways.

**First,** students are encouraged to study abroad for a minimum of one fall or one spring semester in any foreign country (except Canada). In that country, they must take the equivalent of a minimum of 12 credits which are transferred to their Hopkins transcript. In this case, these credits can satisfy any degree requirements (Humanities or Social Sciences, Engineering Concentration, Mathematics, Free Electives, etc.).

**Second,** students may complete the equivalent of two semesters of the same foreign language (students may not use language courses in their native language to satisfy this requirement) and one additional course which relates to the culture, economy, social structure, or politics of a country to which uses this foreign language (9 credits).

**Third,** students may demonstrate proficiency in a foreign language by taking an intermediate course in a foreign language (this can include their native tongue) and two additional courses which relate to the culture, economy, social structure, or politics of a country which uses this foreign language (9 credits).

**Engineering Core (15 credits)**
One course (3 credits) that is an introduction to an engineering discipline. Examples include:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN.500.101</td>
<td>What Is Engineering?</td>
<td>3</td>
</tr>
<tr>
<td>EN.520.137</td>
<td>Introduction To Electrical &amp; Computer Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EN.530.111</td>
<td>Intro to MechE Design and CAD</td>
<td>2</td>
</tr>
<tr>
<td>EN.560.141</td>
<td>Perspectives on the Evolution of Structures</td>
<td>3</td>
</tr>
<tr>
<td>EN.570.108</td>
<td>Introduction to Environmental Engineering and Design</td>
<td>4</td>
</tr>
</tbody>
</table>

One course (at least 3 credits) in a computer language. Examples include:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN.500.112</td>
<td>Gateway Computing: JAVA</td>
<td>3</td>
</tr>
<tr>
<td>EN.500.113</td>
<td>Gateway Computing: Python</td>
<td>3</td>
</tr>
<tr>
<td>EN.500.114</td>
<td>Gateway Computing: Matlab</td>
<td>3</td>
</tr>
<tr>
<td>EN.601.220</td>
<td>Intermediate Programming</td>
<td>4</td>
</tr>
</tbody>
</table>

Three courses in the fundamentals of engineering science (at least one course from three of the following four areas):

**Area 1: Circuits**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN.520.230</td>
<td>Mastering Electronics</td>
<td>2</td>
</tr>
</tbody>
</table>

**Area 2: Statics**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN.560.201</td>
<td>Statics &amp; Mechanics of Materials</td>
<td>3.0</td>
</tr>
</tbody>
</table>

**Area 3: Materials Science**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN.510.311</td>
<td>Structure Of Materials</td>
<td>3.0</td>
</tr>
</tbody>
</table>

**Area 4: Thermodynamics**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN.530.231</td>
<td>Mechanical Engineering Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>or EN.540.203</td>
<td>Engineering Thermodynamics</td>
<td>3</td>
</tr>
</tbody>
</table>

**Engineering Focus Area (20 credits)**
The engineering focus area must consist of at least six courses (minimum of 20 credits) that are related thematically or departmentally; at least three (3) of which must be at the advanced level (300 or above). While examples of focus areas are provided in the Advising Manual, students are encouraged to develop their own focus areas in consultation with their faculty advisor.

**Free Electives**
Between five and nine full courses (at least 3 credits each) to ensure a minimum of 120 credits in total. The number of courses required will depend on how the International Dimensions requirement is satisfied and on the courses chosen in other areas. Students must select these courses in consultation with their advisor. These free electives are designed to allow students to develop a curriculum of study uniquely suited to their interests.

Students are required to have a minimum cumulative GPA of 2.0 to graduate. Further, a maximum of 12 "D" credits may be counted toward degree requirements. There is a maximum limit of six "D" credits in any combination of courses used to satisfy the Humanities or Social Sciences focus, the Engineering Core and the Engineering Focus Area (47 total credits).

For current faculty and contact information go to http://engineering.jhu.edu/academics/general-engineering/people/

**Faculty**

**Chair**
Michael Falk  
Professor (Materials Science & Engineering, Mechanical Engineering, Physics) and Vice Dean for Undergraduate Education. Primary Advisor to the General Engineering Program and Chair of the General Engineering Faculty.

**Professors**
Kalina Hristova  
Professor (Materials Science and Engineering).

Daniel Naiman  
Professor (Applied Mathematics and Statistics).

Erica Schoenberger  
Professor (Environmental Health and Engineering).

Scott Smith  
Professor (Computer Science).

Howard Weinert  
Professor (Electrical and Computer Engineering).

**Senior Lecturer**
Lise Dahuron  
Senior Lecturer (Chemical and Biomolecular Engineering).
Lecturer
Rachel Sangree
Lecturer (Civil Engineering).

For current course information and registration go to https://sis.jhu.edu/classes/

Courses
EN.500.101. What Is Engineering?. 3.0 Credits.
This is a course of lectures, laboratories, and special projects. Its objective is to introduce students not only to different fields of engineering but also to the analytic tools and techniques that the profession uses. Assignments include hands-on and virtual experiments, oral presentations of product design, and design/construction/testing of structures. Freshmen only or Permission Required.
Prerequisites: NA
Corequisites: NA
Instructor(s): C. Malec
Area: Engineering
NA.

EN.500.103. Hopkins Engineering Sampler Seminar. 1.0 Credit.
This course provides students with an overview of the undergraduate programs in the Whiting School of Engineering. Faculty from various departments will introduce students to their discipline including aspects of their personal research. Freshmen only.
Prerequisites: NA
Corequisites: NA
Instructor(s): C. Malec
Area: Engineering
NA.

EN.500.110. Engineering Innovation. 3.0 Credits.
To introduce engineering ideas, thoughts, and problem-solving to potential engineering students. The course is intended to establish the framework within which engineers typically operate. Registration Requirement: Algebra II with Trig. Open only to high school students admitted to the Engineering Innovation Summer Program. Undergraduates should refer to EN.500.101.
Prerequisites: NA
Corequisites: NA
Instructor(s): C. VerHulst; K. Borgsmiller
Area: NA

EN.500.112. Gateway Computing: JAVA. 3.0 Credits.
This course introduces fundamental programming concepts and techniques, and is intended for all who plan to develop computational artifacts or intelligently deploy computational tools in their studies and careers. Topics covered include the design and implementation of algorithms using variables, control structures, arrays, functions, files, testing, debugging, and structured program design. Elements of object-oriented programming. Algorithmic efficiency and data visualization are also introduced. Students deploy programming to develop working solutions that address problems in engineering, science and other areas of contemporary interest that vary from section to section. Course homework involves significant programming. Attendance and participation in class sessions are expected.
Prerequisites: Students may not have earned credit in courses: EN.500.113 OR EN.500.114 OR EN.510.202 OR EN.520.123 OR EN.530.112 OR EN.580.200 OR EN.601.107.
Corequisites: NA
Instructor(s): I. Sekyonda; S. More
Area: Engineering
NA.

EN.500.113. Gateway Computing: Python. 3.0 Credits.
This course introduces fundamental programming concepts and techniques, and is intended for all who plan to develop computational artifacts or intelligently deploy computational tools in their studies and careers. Topics covered include the design and implementation of algorithms using variables, control structures, arrays, functions, files, testing, debugging, and structured program design. Elements of object-oriented programming. Algorithmic efficiency and data visualization are also introduced. Students deploy programming to develop working solutions that address problems in engineering, science and other areas of contemporary interest that vary from section to section. Course homework involves significant programming. Attendance and participation in class sessions are expected.
Prerequisites: Students may not have earned credit in: EN.500.112 OR EN.500.114 OR EN.510.202 OR EN.520.123 OR EN.530.112 OR EN.580.200 OR EN.601.107
Corequisites: NA
Instructor(s): K. Kutten
Area: Engineering
NA.

EN.500.114. Gateway Computing: Matlab. 3.0 Credits.
This course introduces fundamental programming concepts and techniques, and is intended for all who plan to develop computational artifacts or intelligently deploy computational tools in their studies and careers. Topics covered include the design and implementation of algorithms using variables, control structures, arrays, functions, files, testing, debugging, and structured program design. Elements of object-oriented programming. Algorithmic efficiency and data visualization are also introduced. Students deploy programming to develop working solutions that address problems in engineering, science and other areas of contemporary interest that vary from section to section. Course homework involves significant programming. Attendance and participation in class sessions are expected.
Prerequisites: Students may not have earned credit in: EN.500.112 OR EN.500.113 OR EN.510.202 OR EN.520.123 OR EN.530.112 OR EN.580.200 OR EN.601.107
Corequisites: NA
Instructor(s): D. Giovanis
Area: Engineering
NA.
EN.500.130. Biomedical Engineering Innovation. 3.0 Credits.
To introduce biomedical engineering ideas, thoughts, and problem-solving to potential engineering students. The course is intended to establish the framework within which engineers typically operate. Registration Requirement: Algebra II with Trig. Open only to high school students who have successfully completed the Engineering Innovation Summer Program.
Prerequisites: Open only to high school students who have successfully completed the Engineering Innovation Summer Program - EN.500.110
Corequisites: NA
Instructor(s): J. Hoover; K. Borgsmiller
Area: Engineering, Natural Sciences
NA.

EN.500.132. Bootcamp: Java. 1.0 Credit.
This on-line course provides students who have already achieved a basic understanding of programming and computational thinking in one programming language with an opportunity to apply these skills in another programming language. Students will be expected to complete projects to demonstrate proficiency in the new language. Satisfactory/unsatisfactory only.
Prerequisites: Not open to students who have completed EN.601.107, EN.600.107, or EN.500.112;EN.500.113 OR EN.500.114 OR EN.510.202 OR EN.580.200 OR EN.530.112 OR EN.520.123
Corequisites: NA
Instructor(s): J. Kovba
Area: Engineering
NA.

EN.500.133. Bootcamp: Python. 1.0 Credit.
This on-line course provides students who have already achieved a basic understanding of programming and computational thinking in one programming language with an opportunity to apply these skills in another programming language. Students will be expected to complete projects to demonstrate proficiency in the new language. Satisfactory/unsatisfactory only.
Prerequisites: Not open to students who have completed EN.500.113 or EN.580.200;EN.500.112 OR EN.500.114 OR EN.601.107 OR EN.510.202 OR EN.530.112 OR EN.520.123
Corequisites: NA
Instructor(s): J. Kovba
Area: Engineering
NA.

EN.500.134. Bootcamp: MATLAB. 1.0 Credit.
This on-line course provides students who have already achieved a basic understanding of programming and computational thinking in one programming language with an opportunity to apply these skills in another programming language. Students will be expected to complete projects to demonstrate proficiency in the new language. Satisfactory/unsatisfactory only.
Prerequisites: Not open to students who have completed EN.500.114, EN.510.202, EN.520.123, EN.530.112, EN.540.111, EN.540.305, EN.580.200, or EN.553.281;EN.500.112 OR EN.500.113 OR EN.601.107
Corequisites: NA
Instructor(s): M. Rubanov
Area: Engineering
NA.

EN.500.308. Multidisciplinary Engineering Design. 3.0 Credits.
Students will work on teams with colleagues from different engineering disciplines to tackle a challenge for a clinical, community, or industry project partner. Through practicing a creative, human-centered design process, teams will understand the essential need behind the problem, prototype solutions, test their prototypes, and present a final solution to their project partner. In addition to project work, students will learn to collaborate among different working styles. They will contribute expertise from their discipline to the project while learning new skills from their peers.
Prerequisites: NA
Corequisites: NA
Instructor(s): A. Murphy
Area: Engineering, Natural Sciences
NA.

EN.500.496. Practical Ethics for Future Leaders. 3.0 Credits.
This is a new interdisciplinary course on leadership, decision making, and the application of ethics to real world problems. JHU students are future leaders of innovation across many fields, including but not limited to engineering, business, law, journalism, government, science and medicine. The goal of this new course is to give students a deep and practical grounding in how leaders make decisions, and in particular difficult decisions where there is no clearly right answer. In the first part of the course, we will cover important concepts in the practical application of ethics; in decision making; and leadership. In the second part of the course, we will take a deep look at major ethical issues resulting from the newfound capabilities made possible by emerging technologies. This term, the main question will be, should humans eliminate disease-carrying mosquitoes using gene editing technology? In future terms, the question will be different. The awesome power of emerging technologies to modify our world - our food supply, our health, even people - will only increase and become more pressing in coming years. Questions include: Is modifying wild animals ethical, on its face? Who gets to decide this, and how do they decide? Animals interact with humans and cross borders - can one jurisdiction (county, state or country) make changes to wild populations that would impact others? Both EN.500.496 and EN.500.497 are primarily a combination of online lectures, readings and substantial discussion components during the first 2/3rds of the semester. EN.500.496.01 also incorporates several small group meetings in the final weeks of the semesters.
Prerequisites: If you have already taken EN.500.497, you cannot take EN.500.496.
Corequisites: NA
Instructor(s): D. Mathews; F. Macgabhann; I. Gannot
Area: Humanities, Social and Behavioral Sciences
NA.
EN.500.497. Practical Ethics for Future Leaders. 2.0 Credits.
This is a new interdisciplinary course on leadership, decision making, and the application of ethics to real world problems. JHU students are future leaders of innovation across many fields, including but not limited to engineering, business, law, journalism, government, science and medicine. The goal of this new course is to give students a deep and practical grounding in how leaders make decisions, and in particular difficult decisions where there is no clearly right answer. In the first part of the course, we will cover important concepts in the practical application of ethics; in decision making; and leadership. In the second part of the course, we will take a deep look at major ethical issues resulting from the newfound capabilities made possible by emerging technologies. This term, the main question will be, should humans eliminate disease-carrying mosquitoes using gene editing technology? In future terms, the question will be different. The awesome power of emerging technologies to modify our world - our food supply, our health, even people - will only increase and become more pressing in coming years. Questions include: Is modifying wild animals ethical, on its face? Who gets to decide this, and how do they decide? Animals interact with humans and cross borders - can one jurisdiction (county, state or country) make changes to wild populations that would impact others? Both EN.500.496 and EN.500.497 are primarily a combination of online lectures, readings and substantial discussion components during the first 2/3rds of the semester. EN.500.496.01 also incorporates several small group meetings in the final weeks of the semesters.
Prerequisites: If you have already taken EN.500.496, you cannot take EN.500.497.
Corequisites: NA
Instructor(s): F. Macgabhann; I. Gannot
Area: Humanities, Social and Behavioral Sciences
NA.

EN.500.501. SAB/JHU General Engineering Research (Abroad). 3.0 Credits.
General Engineering Research Project Abroad for undergraduate participating on summer projects with NUS, EPFL, SJTU, and DTU. Permission required.
Prerequisites: You must request Independent Academic Work using the Independent Academic Work form found in Student Self-Service: Registration > Online Forms.
Corequisites: NA
Instructor(s): Staff
Area: NA
NA.

EN.500.551. Engineering Research Practicum. NA Credit.
NA
Prerequisites: NA
Corequisites: NA
Instructor(s): Staff
Area: NA
NA.

EN.500.601. Research Laboratory Safety. 1.0 Credit.
This course provides practical exercises in laboratory safety, employing information on chemical, physical, radiation, and biological hazards. Exercises include topics such as ethics, inherently safer design, and application of safety knowledge and analysis to analyze real and/or constructed experiments. The course is suitable for experienced researchers and for graduate students who have not yet begun working in a research laboratory in Homewood Schools. The course is given on six consecutive weeks in the latter half of the semester to allow time for students to study preliminary materials and take online exams on Blackboard. The preliminary material must be completed before the first class in order to progress in the course unless permission is obtained from the instructor. Offered Spring and Fall semesters.
Prerequisites: NA
Corequisites: NA
Instructor(s): D. Kuespert
Area: NA
NA.

EN.500.602. Seminar: Environmental and Applied Fluid Mechanics. 1.0 Credit.
NA
Prerequisites: NA
Corequisites: NA
Instructor(s): J. Katz
Area: NA
NA.

EN.500.603. Academic Ethics. NA Credit.
NA
Prerequisites: NA
Corequisites: NA
Instructor(s): C. Kavanagh
Area: NA
NA.

EN.500.745. Seminar in Computational Sensing and Robotics. 1.0 Credit.
Seminar series in robotics. Topics include: Medical robotics, including computer-integrated surgical systems and image-guided intervention. Sensor based robotics, including computer vision and biomedical image analysis. Algorithmic robotics, robot control and machine learning. Autonomous robotics for monitoring, exploration and manipulation with applications in home, environmental (land, sea, space), and defense areas. Biorobotics and neuromechanics, including devices, algorithms and approaches to robotics inspired by principles in biomechanics and neuroscience. Human-machine systems, including haptic and visual feedback, human perception, cognition and decision making, and human-machine collaborative systems. Cross-listed Mechanical Engineering, Computer Science, Electrical and Computer Engineering, and Biomedical Engineering.
Prerequisites: NA
Corequisites: NA
Instructor(s): L. Whitcomb; P. Kazanzides
Area: NA
NA.
EN.500.781. Preparation for University Teaching. 1.5 Credits.
This course will prepare graduate students to teach at the university level. Topics covered include large and small class teaching, characteristics of student learning, syllabus construction, grading students, and developing a teaching portfolio. Full-time EN Graduate Students only. Co-listed with AS.360.781.
Prerequisites: NA
Corequisites: NA
Instructor(s): R. Shingles
Area: NA

EN.500.851. Engineering Research Practicum. 1.0 - 9.0 Credits.
NA
Prerequisites: NA
Corequisites: NA
Instructor(s): C. Kavanagh
Area: NA

Cross Listed Courses
Civil Engineering
EN.560.141. Perspectives on the Evolution of Structures. 3.0 Credits.
Why do buildings and bridges look the way they do today? Students will be provided the tools to answer this question for themselves through a study of the history of the design of buildings and bridges throughout the world from both engineering and architectural/aesthetic perspectives. Only simple mathematics is required (no calculus). Students will participate in individual and group critique of structures from engineering, architectural, and social points of view.
Prerequisites: NA
Corequisites: NA
Instructor(s): B. Schafer; R. Sangree
Area: Engineering, Quantitative and Mathematical Sciences
Writing Intensive.

Institute for NanoBio Technology
EN.670.616. Introduction to NanoBio Tutorials II. 1.0 Credit.
Ph.D. students and postdoctoral fellows in the HHMI/IGERT/PSOC/CCNE/CNTC training programs study and present topics in nanotechnology for biology and medicine.
Prerequisites: NA
Corequisites: NA
Instructor(s): H. Mao
Area: NA
NA.